| 翻訳と辞書 | Order-3 apeirogonal tiling| Iii symmetry  : ウィキペディア英語版 | 
 
 In geometry, the order-3 apeirogonal tiling is a regular tiling of the hyperbolic plane. It is represented by the Schläfli symbol , having three regular apeirogons around each vertex.  Each apeirogon is inscribed in a horocycle.
 The order-2 apeirogonal tiling represents an infinite dihedron in the Euclidean plane as .
 ==Images==
 Each apeirogon face is circumscribed by a horocycle, which looks like a circle in a Poincaré disk model, internally tangent to the projective circle boundary.
 :240px
 
 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』
 ■ウィキペディアで「Order-3 apeirogonal tiling」の詳細全文を読む
 
 
 
 スポンサード リンク
 
 | 翻訳と辞書 : 翻訳のためのインターネットリソース | 
 | Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
 
 | 
 |